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KEY FINDINGS

n	 There is strong empirical evidence that asset class correlations are asymmetric, which 
poses complications in portfolio construction.

n	 Investors prefer diversification when a portfolio’s main growth engine performs poorly 
and unification when it performs well.

n	 To measure correlation asymmetry caused by nonnormality, investors must adjust for 
changes in correlation that arise mathematically when part of a sample is excluded.

n	 Unlike prior research, investors should condition correlations on the performance of a 
single asset, not two assets.

ABSTRACT

That investors should diversify their portfolios is a core principle of modern finance. Yet there 
are some periods in which diversification is undesirable. When the portfolio’s main growth 
engine performs well, investors prefer the opposite of diversification. An ideal complement 
to the growth engine would provide diversification when it performs poorly and unification 
when it performs well. Numerous studies have presented evidence of asymmetric correla-
tions between assets. Unfortunately, this asymmetry is often of the undesirable variety: It 
is characterized by downside unification and upside diversification. In other words, diver-
sification often disappears when it is most needed. In this article, the authors highlight 
a fundamental flaw in the way some prior studies have measured correlation asymmetry. 
Because they estimate downside correlations from subsamples in which both assets per-
form poorly, they ignore instances of successful diversification (i.e., periods in which one 
asset’s gains offset the other’s losses). The authors propose instead that investors measure 
what matters: the degree to which a given asset diversifies the main growth engine when 
it underperforms. This approach yields starkly different conclusions, particularly for asset 
pairs with low full-sample correlation. The authors review correlation mathematics, highlight 
the flaw in prior studies, motivate the correct approach, and present an empirical analysis 
of correlation asymmetry across major asset classes.
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The correlation coefficient, the parameter that quantifies the degree to which 
two assets diversify one another, took on new significance in 1952 when Harry 
Markowitz published his landmark article “Portfolio Selection.” Markowitz (1952) 

formalized the role of diversification when he showed how to construct optimal port-
folios given the expected returns, standard deviations, and correlations of their com-
ponent assets. Nearly 70 years after it was introduced, the mean–variance paradigm 
has proven surprisingly robust. However, it makes two implicit assumptions about 
diversification that warrant careful consideration. Because it relies on a single param-
eter to approximate the way each pair of assets co-vary, mean–variance optimization 
assumes that correlations are symmetric on the upside and downside. Moreover, 
the approach assumes that diversification is desirable on the upside as well as the 
downside. The first assumption is occasionally correct, but the second assumption 
never is.

Diversification is most helpful to investors when the major engine of growth in the 
portfolio, typically domestic equities, performs poorly. They derive benefit from assets 
whose returns offset this poor performance. When the growth engine is performing 
well, they would prefer unification, which is the opposite of diversification. The ideal 
complement to domestic equities would be an asset that is correlated positively 
when domestic equities are performing well and negatively when they are not. Put 
simply, investors seek diversification on the downside and unification on the upside. 
An adage, which has been credited both to Mark Twain and Robert Frost, defines a 
banker as “a fellow who lends you his umbrella when the sun is shining but wants it 
back the minute it begins to rain.”1 Diversification often behaves like a banker if this 
characterization is to be believed. 

In this article, we review correlation mathematics and show how to distinguish 
true correlation asymmetry from the illusory correlation shifts that arise as an arti-
fact of how the data are partitioned. We then highlight a fundamental flaw in the way 
several prior studies have measured correlation asymmetry. Because they estimate 
downside correlations from subsamples in which both assets perform poorly, they 
ignore instances of successful diversification (i.e., periods in which one asset’s 
gains offset the other’s losses). We propose instead that investors measure what 
matters: the degree to which a given asset diversifies the main growth engine when 
it underperforms (see, e.g., Page and Panariello 2018). This approach yields differ-
ent conclusions, particularly for asset pairs with low correlation. To compare the 
two approaches, we present an empirical study of correlation asymmetry across six 
major asset classes. Finally, we show how investors can employ full-scale optimiza-
tion to construct portfolios that exploit correlation asymmetry by increasing average 
correlation on the upside when it is beneficial and reducing average correlation on 
the downside when it is not.

LITERATURE REVIEW

Page and Panariello (2018), Page (2020), and many others have argued that 
despite the wide body of published research, many investors still do not fully appre-
ciate the impact of correlation asymmetries on portfolio efficiency or, perhaps more 
importantly, exposure to loss. During left-tail events, diversified portfolios may have 
greater exposure to loss than more concentrated portfolios. Leibowitz and Bova 
(2009) showed that during the 2008 global financial crisis, a portfolio diversified 
across US equities, US bonds, foreign developed equities, emerging market equi-
ties, and real estate investment trusts (REITs) saw its equity beta rise from 0.65 
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to 0.95, and the portfolio unexpectedly underperformed a simple 60/40 US stock/
bond portfolio by 9%.

Studies on tail dependence (how crashes tend to happen at the same time across 
markets) corroborate these findings. For example, Garcia-Feijóo, Jensen, and Johnson 
(2012) showed that when US equity returns are in their bottom 5%, non-US equities, 
commodities, and REITs also experience significantly negative returns, beyond what 
would be expected from full-sample correlations. Hartmann, Straetmans, and de 
Vries (2010) showed that currencies co-crash more often than would be predicted 
by a bivariate normal distribution. Similarly, Hartmann, Straetmans, and de Vries 
(2004) estimated that stock markets in G-5 countries are two times more likely to 
co-crash than bond markets. Van Oordt and Zhou (2012) extended pairwise analysis 
to joint tail dependence across multiple markets and reached similar conclusions. 
These studies ignore asymmetries, however, between the left and right tails. They 
either focus on the left tail or use symmetrical measures of tail dependence, such 
as the joint t-distributions.

Prior research suggests that correlation asymmetries are closely related to the 
concept of risk regimes. Financial markets tend to fluctuate between a low-volatility 
state and a panic-driven, high-volatility state (see, e.g., Kritzman, Page, and Turkington 
2012). In fact, Ang and Bekaert (2015) directly linked the concept of regime shifts to 
rising left-tail correlations. But what causes regime shifts? A partial answer is that 
macroeconomic fundamentals themselves exhibit regime shifts, as documented for 
inflation and growth data.

In normal markets, differences in fundamentals drive diversification across risk 
assets. During panics, however, investors often sell risk irrespective of differences in 
fundamentals. Huang, Rossi, and Wang (2015), for example, showed that sentiment 
is a common factor that drives both equity and credit-spread returns—beyond the 
effects of default risk, liquidity, and macro variables—and suggested that sentiment 
often spills over from equities to the credit markets.

Related studies in the field of psychology suggest that to react more strongly to 
bad news than good news is human nature. Fear is more contagious than optimism. In 
an article titled “Bad Is Stronger than Good,” Baumeister et al. (2001) explained that 
“Bad information is processed more thoroughly than good.... From our perspective, 
it is evolutionarily adaptive for bad to be stronger than good.”

The literature is divided, however, on the correct approach to measuring correla-
tion asymmetry. As we will explain further, some studies (e.g., Longin and Solnik 
2001; Ang and Chen 2002; Chua, Kritzman, and Page 2009) estimate downside 
correlations by conditioning on the returns of both assets simultaneously. Others, 
such as Page and Panariello (2018), Gulko (2002), and Garcia-Feijóo, Jensen, and 
Johnson (2012), conditioned on the returns of a single asset. In this article, we show 
why the former approach is flawed and argue that the latter approach results in a 
more useful measure of correlation asymmetry.

CORRELATION MATHEMATICS

Market participants often remark that “correlations go to one” when the markets 
are in turmoil, but such differences do not necessarily prove that the bivariate return 
distribution is nonnormal or that returns emanate from more than one regime. Sub-
sample correlations change naturally as an artifact of how we partition the sample, 
even if the underlying distribution is normal. We must therefore account for these 
effects to detect correlation asymmetry properly.

Longin and Solnik (2001) introduced the notion of exceedance correlation, which 
they defined as the correlation between two assets when the returns of both assets are 
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either above or below a given threshold. For example, 
they might estimate the exceedance correlation for US 
and foreign equities from the subsample of returns 
in which both asset classes suffer losses of 10% or 
more. Chua, Kritzman, and Page (2009) applied the 
same approach to a variety of asset classes, country 
equity markets, hedge fund styles, and fi xed-income 
segments. They found pervasive evidence of cor-
relation asymmetry that is unfavorable to investors. 
However, this specifi cation of exceedance correlation 
suffers from a fundamental fl aw: It misses important 
instances of diversifi cation because it ignores out-
comes in which, in the previous example, US equities 
perform poorly but foreign equities perform well. 

Exhibit 1 presents a simple illustration of this 
point. We use Monte Carlo simulation to generate 
500 returns for assets X and Y that conform to a 
bivariate normal distribution with identical means 
equal to zero, standard deviations equal to 20%, 
and a correlation of 0.50. Imagine that asset X is 
the main growth driver in the portfolio and that we 
have selected asset Y to diversify it. When asset X
is performing well, we would prefer that asset Y fol-

low suit. These outcomes refl ect desirable upside unifi cation and are associated 
with the upper right quadrant of Exhibit 1. On the other hand, when asset X is suf-
fering losses, we would prefer that asset Y decouple from asset X to offset those 
losses. These outcomes refl ect desirable downside decoupling of asset Y and are 
associated with the upper-left quadrant of Exhibit 1. These are the periods in which 
asset Y successfully diversifi es asset X. Finally, the lower left quadrant of Exhibit 1 
is associated with very unpleasant outcomes in which asset X underperforms and 
asset Y fails to diversify it. 

It is evident from this illustration that we must consider the entire left side of the 
distribution to measure properly the diversifi cation potential of asset Y with respect to 
asset X. It would not be informative to focus only on the lower left quadrant because 
these are the instances in which diversifi cation has already failed. Yet this is the way 
several other studies have measured downside correlations.

Exhibit 2 presents a comparison of these two approaches for the bivariate distri-
bution presented in Exhibit 1 with a threshold value of 0%. The left panel shows the 
subsample in which both assets’ returns are below the threshold; this is the approach 
taken by Longin and Solnik (2001), Chua, Kritzman, and Page (2009), Ang and Chen 
(2002), and others. We submit that investors should instead estimate downside 
correlations from the subsample of returns shown in the right panel, in which the 
return of asset X is below a particular threshold, regardless of the return of asset Y. 
This approach introduces additional complexity because we are now able to estimate 
two downside correlation coeffi cients for each pair of assets, one conditioned on the 
returns of each asset. This doubles the number of correlation coeffi cients we must 
potentially consider. It is, however, reasonable for investors to focus their attention 
on a few of the portfolio’s main growth engines, the assets that contribute the largest 
share of portfolio risk, as the conditioning assets. 

The upside and downside correlations between assets X and Y, conditioned on 
the returns of asset X, are given by Equation 1.

EXHIBIT 1
Return Observations for Two Assets

Asset Y
Return

Asset X
Return

Desirable
Upside

Unification

Y Decouples
from X on the

Downside

Undesirable
Downside
Unification

X Decouples
from Y on the

Downside
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corr x y x if

corr x y x if

( ,x y( ,x y ) x i) x i   0

( ,x y( ,x y ) x i) x i   0
( )ρ θ( )ρ θ( ) =

> θx i> θx i θ >  0θ >  0

< θx i< θx i θ <  0θ <  0













 (1)

where ρ is the upside or downside correlation, x and y are observed returns for 
each asset, and θ is the threshold applied to the returns of asset X. In practice, we 
express θ in units of standard deviation above or below the mean of asset X. Thus, 
if we set θ equal to +1.0, we would evaluate the top portion of Equation 1 and esti-
mate correlation for all observations in which the return of asset X is one standard 
deviation or more above its mean. If we set θ equal to −1.5 we would evaluate the 
bottom portion of Equation 1, which focuses on the subsample of returns in which 
asset X is 1.5 standard deviations or more below its mean. In the unique case in 
which θ equals zero, we evaluate both equations to estimate an upside correlation 
(in which returns are above the mean) and a downside correlation (in which returns 
are below the mean). Because the bivariate normal distribution is symmetric, the 
expected upside and downside correlations will be identical in this instance and for 
any instance in which the thresholds have the same absolute value. 

Given Equation 1 and setting θ equal to zero, the upside and downside correla-
tion associated with the bivariate distribution defi ned earlier is 0.33, as opposed 
to 0.50 for the full sample. If we modify Equation 1 to apply the threshold to both 
assets’ returns, the upside and downside correlation is 0.27. Were these estimates 
derived from real data rather than simulated data, we might be tempted to conclude 
that diversifi cation increases in the extremes for this pair of assets. However, this 
interpretation would be incorrect. These differences are an artifact of conditional 
correlation math and do not indicate any change in the relationship between the two 
assets in the tails. Exhibit 3 shows how the expected upside and downside correla-
tions change as a function of threshold value (θ).

Exhibit 3 reveals that the conditional correlations decrease as the absolute value 
of the threshold increases. At a threshold value of positive or negative 20%, corre-
sponding to one standard deviation, the upside and downside correlation is 0.25 if we 
condition on asset X. It is 0.18 if we condition on both assets. Exhibit 3 also reveals 
that, all else equal, we should expect a higher correlation by construction when we 

EXHIBIT 2
Subsamples of Returns for Assets X and Y in Which One or Both Assets Underperform

Subsample of Observations
Where X < θ and Y < θ, θ = 0%

80%

80%

40%

40%

0%

0%–40%

–40%

–80%
–80%

Subsample of Observations
Where X < θ, θ = 0%

80%

40%

0%

–40%

–80%
80%40%0%–40%–80%
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condition on one asset than when we condition on both. When we estimate upside 
and downside correlations from empirical data, we must compare them to these 
expected values. Only if we observe material differences between the empirical and 
expected correlation profi les can we conclude that the observed correlation asymme-
try is a symptom either of a nonnormal bivariate distribution or multiple distributions. 
In these instances, investors should consider adjusting explicitly for correlation asym-
metry when they construct portfolios or estimate downside risk exposure.

Exhibit 4 shows the empirical correlation profi le for US equities and foreign devel-
oped equities based on monthly returns starting in January 1976 and ending in 
December 2019.2 It also shows the expected correlation profi le for the corresponding 
bivariate normal distribution. These two asset classes have a full sample correlation 
of 0.66. Because the two asset classes have different volatilities, we standardize 
each return series by subtracting the mean from each monthly observation and divid-
ing this quantity by the standard deviation. Exhibit 4, Panel A shows the correlation 
profi le in which the threshold is applied to both assets. Exhibit 4, Panel B shows 
results conditioned on US equity only, as given by Equation 1.

We can draw two conclusions from Exhibit 4. First, in both cases, the empiri-
cal downside correlation is higher than implied by the bivariate normal distribution. 
In the right tail, we observe the opposite. This correlation profi le represents down-
side unifi cation and upside diversifi cation and is therefore undesirable to investors. 
Second, we observe that the two correlation profi les are quite similar: It does not 
appear to make much difference whether we condition on the returns of one asset or 
both assets. This is because the two assets have a relatively high correlation to start. 
As a result, most observations are in the lower-left and upper-right quadrants anyway, 
and we therefore retain most of them when we impose the double condition.

EXHIBIT 3
Conditional Correlations for the Bivariate Normal Distribution as a Function of θ

NOTES: The exhibit shows conditional correlations estimated from subsamples of a bivariate normal distribution with means equal to zero, 
standard deviations equal to 20%, and a correlation of 0.50. We employ Monte Carlo simulation to create a sample of 100 million obser-
vations. We then estimate conditional correlations for each threshold, θ, using Equation 1 which conditions on asset X only. We then 
estimate conditional correlations using an analogous equation in which the returns of both assets are above or below the threshold, θ.
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Exhibit 5 presents the analogous results for US equity and US corporate bonds, 
which have a relatively low full-sample correlation. In this case, we observe that 
the two methods lead to entirely different conclusions. The correct approach, 
shown in Exhibit 5, Panel B, shows that US corporate bonds offer some desirable 
downside decoupling. The incorrect approach, shown in Panel A, suggests that the 
two asset classes have higher-than-normal correlation on the downside.

EXHIBIT 4
Empirical Correlation Profile for US Equities and Foreign Developed Equities

Panel A: Correlation Profile for US and Foreign Equity, Conditioned on Both Assets
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We present this example because it highlights how the single and double condi-
tioning approaches can lead to different conclusions, not to suggest that US corporate 
bonds impart the most desirable correlation asymmetry to US equity. That designation 
belongs to Treasury bonds. Corporate bond returns have two components: a duration 
component and a credit component. The former tends to diversify equity exposure, 
whereas the latter does not. During some periods, the duration component overpow-
ers the credit component, enabling corporate bonds to decouple from equities on 
the downside. Yet the double conditioning approach is blind to these periods, which 
are akin to outcomes in the upper-left quadrant of Exhibit 1. Double conditioning 
therefore produces higher downside correlation estimates by design, as is evident 
from Exhibit 5, Panel A. The single conditioning approach captures the full left side 
of the distribution and therefore produces a lower downside correlation estimate, as 
shown in Exhibit 5, Panel B.

In the next section, we extend our analysis of correlation asymmetry to present 
a comprehensive empirical study among six major asset classes. To do so concisely, 
we introduce a summary metric to capture the degree of correlation asymmetry for 
each asset pair. The metric we choose is the average difference between the empir-
ical and expected downside correlations across threshold values for down markets, 
less the analogous quantity for up markets. We calculate these average differences 
for up and down markets as given by Equation 2 as proposed by Chua, Kritzman, 
and Page (2009). 

n

n

dn
i

n

emp i exp iexp iex

up
i

n

emp i exp iexp iex

1
[ ( ) (ex) (exp i) (p iexp iex) (exp iex )],    0

1
[ ( ) (ex) (exp i) (p iexp iex) (exp iex )],    0

1

1

∑

∑

µ =dnµ =dn ρ θemρ θemp iρ θp i[ (ρ θ[ (em[ (emρ θem[ (emp i[ (p iρ θp i[ (p i − ρ) (− ρ) (θ <foθ <for iθ <r ip iθ <p i )], θ <)],    0θ <  0r i  0r iθ <r i  0r i

µ =upµ =up ρ θemρ θemp iρ θp i[ (ρ θ[ (em[ (emρ θem[ (emp i[ (p iρ θp i[ (p i − ρ) (− ρ) (θ >foθ >for iθ >r ip iθ >p i )], θ >)],    0θ >  0r i  0r iθ >r i  0r i

=

=

 (2)

The terms µdn and µup are the average differences for up and down markets, 
respectively; ρemp(θi) is the empirical upside or downside correlation at threshold 
θi; and ρexp(θi) is the corresponding expected upside or downside correlation for a 

EXHIBIT 5
Correlation Profile for US Equity and Corporate Bonds
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bivariate normal distribution. For both up and down 
markets, we iterate through n thresholds in equally 
spaced intervals of 0.1 standard deviations. We stop 
iterating when there are fewer than 30 observations 
beyond the threshold. We then take the difference 
between the upside and downside averages given by 
Equation 2 (µdn − µup) to arrive at a summary metric for 
correlation asymmetry. Positive values for this metric 
indicate the presence of an undesirable correlation 
profi le (net downside unifi cation or upside diversifi -
cation). Negative values indicate a desirable profi le 
(downside decoupling or upside unifi cation). For US 
and foreign developed equities, this average differ-
ence is equal to 0.32, refl ecting an undesirable cor-
relation profi le.

CORRELATION ASYMMETRY BETWEEN 
ASSET CLASSES

Research has shown that most asset universes offer less diversifi cation during 
down markets than during up markets, including country equity markets, global indus-
tries, individual stocks, hedge funds, and international bonds. The correlation between 
stocks and bonds is often an exception to this pattern. Kritzman, Lowry, and Van 
Royen (2001) found that stock–bond correlations within countries decrease during 
periods of market turbulence. In this section, we build on this fi nding to analyze the 
pervasiveness of correlation asymmetry across the six major asset classes shown 
in Exhibit 6. Exhibit 6 shows the full-sample return and standard deviation of each 
asset class, and Exhibit 7 shows the full-sample correlation matrix.3

To measure correlation asymmetry for each pair of asset classes, we report in 
Exhibit 8 the summary metric (µdn − µup) as given by Equation 2. Panel A reports this 
summary metric following the double conditioning specifi cation. Because the thresh-
old is applied to both assets simultaneously, this matrix is symmetric. Panel B reports 
the summary metric for each asset class pair following our favored single conditioning 
approach. In this case, the matrix is not symmetric. The values presented in this 
panel capture the correlation asymmetry between the row asset and column asset 
when we condition on the returns of the row asset. Panel C reports the differences 
between Panels A and B.

We draw several conclusions from Exhibit 8: 

§ When paired with US equities as the conditioning asset, Panel B reveals 
that emerging market equities, foreign developed equities, and commodities 
are less desirable complements. They exhibit correlation asymmetry that is 
unfavorable to investors. On the other hand, Treasury and corporate bonds 
exhibit a favorable correlation profi le.
§ When paired with Treasury bonds as the conditioning asset, Panel B shows 

that corporate bonds offer the most favorable correlation profi le and com-
modities the least.

3 We use the following benchmark indexes as proxies for each asset class. For US equities, we use 
the S&P 500 Total Return Index. For foreign developed equities, we use the MSCI World ex-US Total 
Return Index. For emerging market equities, we use the MSCI Emerging Markets Total Return Index. 
For Treasury bonds, we use the Barclays US Treasury Total Return Index. For US corporate bonds, we 
use the Barclays US Credit Total Return Index. For commodities, we use the S&P GSCI Commodity Total 
Return Index. We procured all data from Datastream.

EXHIBIT 6
Asset Class Returns and Standard Deviations

NOTES: Annualized return is the arithmetic return of each asset 
class from January 1976 through December 2019, with the 
exception of emerging markets, for which data begin in January 
1988. Standard deviation is the annualized standard deviation 
of monthly returns over the same period. 

Asset Class

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

Return (% p.a.)

12.66
11.10
13.51

7.16
8.15
6.26

Standard
Deviation (% p.a.)

14.54
16.38
22.36

5.20
6.61

19.06
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§ Treasury bonds are the only asset that is universally favorable as a com-
plement. Panel B shows that Treasury bonds impart benefi cial asymmetry 
when returns are conditioned on any other asset class, although the benefi t 
imparted to commodities is negligible. That said, interest rates are near zero 
as we write this article in February 2021. We therefore cannot expect Treasury 
bonds to rally as much during equity sell-offs as they have in the past.
§ Because it ignores observations in the upper-left quadrant, the joint condition-

ing approach employed in Panel A understates the favorable correlation profi le 
that Treasury and corporate bonds impart to the three equity asset classes. 

EXHIBIT 7
Asset Class Correlations

NOTES: Correlation coeffi cients are derived from the full sample of monthly returns from January 1976 through December 2019. 
Emerging markets correlations are pairwise and derived from the period starting in January 1988, when data became available.

EXHIBIT 8
Correlation Asymmetry among Major Asset Classes

NOTES: We estimate the empirical and expected correlation profi le for each asset pair in the same manner as in Exhibits 4 and 5. 
We estimate the empirical correlation profi le using data starting in January 1976 and ending in December 2019, except for emerging 
market equities, which start in January 1988. Emerging market equity values are estimated pairwise over this time period with each 
other asset class. We only estimate values for thresholds for which at least 30 observations are available above or below the 
threshold. We then average across all thresholds to estimate the excess upside and downside correlation.

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

a

0.67
0.66
0.08
0.30
0.18

b

0.72
0.02
0.24
0.30

c

–0.15
0.22
0.29

d

0.86
–0.09

e

0.02

a
b
c
d
e
f

Asset Class

Panel A: Excess Downside Minus Excess Upside Correlation, Conditioned on Both Assets’ Returns

Panel B: Excess Downside Minus Excess Upside Correlation, Conditioned on Row Asset Only

Panel C: Difference between Panels A and B

f

0.39
0.35
0.10

–0.04
0.17

0.27
0.31
0.05
0.20
0.37

–0.12
–0.04
–0.05
0.24
0.20

a
b
c
d
e
f

a
b
c
d
e
f

a
b
c
d
e
f

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

a

0.34
0.35
0.00
0.14
0.39

0.35
0.29
0.02
0.12
0.47

0.01
–0.06
0.02

–0.02
0.08

b

0.34

0.31
–0.17
0.19
0.35

0.32

0.31
–0.08
0.07
0.56

–0.02

0.00
0.09

–0.13
0.20

c

0.35
0.31

–0.17
0.24
0.10

0.32
0.37

0.05
0.27
0.46

–0.03
0.06

0.23
0.03
0.36

d

0.00
–0.17
–0.17

–0.14
–0.04

–0.35
–0.25
–0.11

–0.23
–0.01

–0.35
–0.08
0.06

–0.09
0.02

e

0.14
0.19
0.24

–0.14

0.17

–0.19
0.07
0.10

–0.19

0.21

–0.33
–0.12
–0.14
–0.05

0.05
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It also overstates the diversifi cation benefi ts that commodities impart to 
fi xed-income asset classes.

IMPLICATIONS FOR PORTFOLIO CONSTRUCTION

Having demonstrated that correlation asymmetry is prevalent among major asset 
classes, we now turn to the question of what investors should do about it. There are 
two ways to account for correlation asymmetry in portfolio management. Investors can

 1. reallocate their portfolios dynamically in anticipation of regime shifts, increas-
ing their exposure to safe-haven assets that offer downside diversifi cation 
when they expect conditions to deteriorate (see, e.g., Kritzman, Page, and 
Turkington 2012), or

 2. place greater weight on downside correlations when setting policy weights, 
thereby constructing a static portfolio that is more resilient to downturns.

Investors who pursue the fi rst approach must monitor market conditions and 
predict which correlations are most likely to prevail in the future. On the other hand, 
investors who pursue the second approach seek to prepare rather than predict. They 
build portfolios as one might design a house on the seashore: for routine use during 
balmy conditions, but suffi ciently resilient to weather a hurricane if one should strike. 
This approach requires that the designer strike an optimal balance between resil-
ience to storms and utility during fair weather conditions—a windowless, concrete 
bunker would provide maximum protection but would not be particularly appealing 
on a sunny day. We propose that investors strike the analogous balance when con-
structing portfolios.

There are several ways investors can construct portfolios that account for 
correlation asymmetry. One is to perform mean–variance optimization using only 
the downside, rather than full sample, correlations. However, this approach would 
be optimal only during extreme conditions. Another would be to blend the full-sample 
correlations with the downside correlations, but this leaves the critical choice of the 
blending ratio. Furthermore, in a portfolio with more than two assets, both methods 
require that the investor select a subset of the assets on whose returns the correla-
tions will be conditioned.

We propose instead that investors use full-scale optimization to account implicitly 
for asymmetric correlations a well as other peculiarities of the multivariate return dis-
tribution. Full-scale optimization, introduced by Cremers, Kritzman, and Page (2005), 
identifi es the optimal portfolio for any return distribution and any specifi cation of 
investor preferences. Whereas mean–variance optimization yields an approximation 
of the in-sample solution if the return distribution is elliptical and investors have pref-
erences that can be described by mean and variance, full-scale optimization yields 
the true optimal portfolio for a given return sample. Rather than relying on parameters 
such as means and covariances to approximate the distribution, full-scale optimi-
zation relies on numerical search algorithms to solve for the weights that maximize 
the given utility function precisely. To demonstrate how this technique accounts for 
correlation asymmetries, we employ a kinked utility function with the kink located at 
a 25% loss. This utility function is given by Equation 3.

U R
R for r k

R forR forR f r kkiU RkiU RnkU RnkU RedU RedU R
ln 1 ,R f1 ,R f   R f   R for   orR forR f   R forR f r k   r k

ln 1 ,R f1 ,R f1 ,R k1 ,R k    R f   R for   orR forR f   R forR f
( )U R( )U R

( )1 ,( )1 ,R f1 ,R f( )R f1 ,R f

( )1 ,( )1 ,R k1 ,R k( )R k1 ,R k( )1 ,( )1 ,R k1 ,R k( )R k1 ,R k R f1 ,R f( )R f1 ,R f
=

+ ≥R f+ ≥R for+ ≥orR forR f+ ≥R forR f r k+ ≥r kR f1 ,R f+ ≥R f1 ,R f1 ,( )1 ,+ ≥1 ,( )1 ,R f1 ,R f( )R f1 ,R f+ ≥R f1 ,R f( )R f1 ,R f

R k1 ,R k+ −R k1 ,R k1 ,( )1 ,+ −1 ,( )1 ,R k1 ,R k( )R k1 ,R k+ −R k1 ,R k( )R k1 ,R k1 ,ω −1 ,R k1 ,R kω −R k1 ,R k1 ,( )1 ,ω −1 ,( )1 ,R k1 ,R k( )R k1 ,R kω −R k1 ,R k( )R k1 ,R k r k<r k













 (3)
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The term Ukinked(R) is expected utility, R is the return of the portfolio, k is the loca-
tion of the kink (in this case, negative 25%), and ω is the slope of the linear utility 
function below the kink. With this utility function, investor satisfaction drops precip-
itously when returns fall below the kink. When returns fall above the kink, investor 
satisfaction conforms to a log-wealth utility function. This utility function is designed 
to express a strong aversion to losses below the kink.

To determine whether full-scale optimization addresses correlation asymmetry 
effectively, we need a way to measure the degree of correlation asymmetry in a port-
folio and whether it is of the desirable or undesirable variety. For this purpose, we 
defi ne the metric ξ in Equation 4:

i

n

j

n

i j i j
dn

i j
upw wi jw wi j ( )dn( )dn
i j( )i j
up( )up

1 1j1 1j
, ,i j, ,i j i j, ,i j∑∑w w∑∑w wξ = µ −i jµ −i j( )µ −( )i j( )i jµ −i j( )i j
dn( )dnµ −dn( )dn
, ,µ −, ,i j, ,i jµ −i j, ,i j µ( )µ( ), ,µ, ,

= =1 1= =1 1j1 1j= =j1 1j

 (4)

where n is the number of assets, wi is the weight of asset i in the portfolio, wj is the 
weight of asset j in the portfolio, and i j

dn
i j
up( )dn( )dn
i j( )i j
up( )up

, ,i j, ,i j i j, ,i jµ −i jµ −i j( )µ −( )i j( )i jµ −i j( )i j
dn( )dnµ −dn( )dn
, ,µ −, ,i j, ,i jµ −i j, ,i j µ( )µ( ), ,µ, ,  is the correlation asymmetry summary 

metric for assets i and j given by Equation 2, conditioned on asset i. Larger values of 
ξ indicate that the portfolio has excess downside correlation, which is undesirable. 
Of course, investors do not derive utility by reducing correlation asymmetry; they 
derive utility by growing wealth. Full-scale optimization does not maximize favorable 
correlation asymmetry directly, but as we will demonstrate, utility is well served by 
pairing assets that unify on the upside and diversify on the downside. Mean–variance 
optimization cannot account for these kinds of asymmetries because it implicitly 
assumes that correlations are symmetric.

Exhibit 9 shows a full-scale optimal portfolio and a corresponding mean–variance 
optimal portfolio with the same expected return of 7%. It also shows the degree of 
undesirable correlation asymmetry for each portfolio, ξ, as well as the utility of each 
portfolio as given by the kinked utility function.

Exhibit 9 reveals that, as we would expect, the mean–variance optimal portfolio 
has a lower standard deviation than the full-scale optimal portfolio. However, the 
mean–variance portfolio suffers a larger average loss when its returns fall below the 
threshold of negative 25%. The full-scale portfolio is able to achieve this reduction 
in downside exposure by reducing undesirable correlation asymmetry that is invisible 
to the mean–variance utility function. The changes in weights are intuitive. The full-
scale optimal portfolio has larger allocations to US equities and Treasury bonds, the 
pair with the most desirable correlation asymmetry profi le during the sample period. 
It holds almost no allocation to commodities or corporate bonds, the pair with the 
least desirable correlation asymmetry profi le during the sample period.

SUMMARY

In this article, we debunk the fallacy that diversifi cation is always benefi cial to 
investors and that correlations are symmetric on the upside and downside. Although 
diversifi cation is desirable on the downside, investors would prefer that all assets 
rise in concert and should seek unifi cation on the upside. When measuring condi-
tional correlations, it is important to adjust for the correlation changes that arise 
naturally as an artifact of correlation math. To detect correlation asymmetry properly, 
we must (1) condition returns on a single asset of interest rather than both assets 
and (2) compare the empirical upside and downside correlations to the values we 
would expect if returns emanated from a single, bivariate normal distribution. Unfor-
tunately, when we make these adjustments, we conclude that most pairs of asset 
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classes exhibit unfavorable correlation profi les. Diversifi cation often disappears on 
the downside when it is most needed, and, like an unwieldy umbrella on a sunny day, 
it is often present on the upside when it imparts no benefi t. Finally, we show how 
investors can use full-scale optimization to construct portfolios that account explicitly 
for asymmetric correlation profi les and other nonnormal features of the distribution 
to maximize expected utility.
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Expected
Return

7.5%
7.8%
8.5%
4.9%
5.3%
6.5%

Standard
Deviation

14.1%
16.4%
22.4%

4.4%
4.9%

20.4%

US Equities
Foreign Developed Equities
Emerging Market Equities
Treasury Bonds
US Corporate Bonds
Commodities

Expected Return
Standard Deviation

Likelihood of Loss > 25%
Average Loss > 25%
Correlation Asymmetry (ξ)

Full-Scale
Optimal
Portfolio

64.3%
9.7%
4.1%

21.5%
0.0%
0.5%

7.0%
10.9%

0.2%
27%

4%

Mean–
Variance
Optimal
Portfolio

42.3%
16.6%
10.0%
12.4%
10.8%

7.8%

7.0%
10.6%

0.2%
30%
15%
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